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An Investigation of Methods for Reducing Sampling Error

in Certain IRT Procedures*

In IRT until now, the sampling variances and covariances for maximum

likelihood estimates of item parameters have usually been computed by

assuming the abilities to be known; the sampling variances and covariances

for ability estimates were computed by assuming the item parameters to be

known. In this paper, a suggested method for computing the sampling

variance-covariance matrix when all parameters are unknown (lord and

Wingersky, 1983) will be used to try to answer various practical

questions. Section 2 presents needed additional, though not conclusive,

evidence that the new method for computing the variance-covariance matrix

yields correct results. Section 3 investigates the effect of changing the

number of items or the number or distribution of people on the standard

errors of the item parameters and of the abilities. Section 4 presents a

technique for displaying and understanding the standard errors and

sampling covariances of estimates of item parameters.

Section 5 deals with the practically important situation where we

have two tests that contain a set of items in common and these tests are

administered to two separate groups of examinees. A problem in item

*This work was supported in part by contract N00014-80-C-0402,

project designation NR 150-453 between the Office of Naval Research and
Educational Testing Service. Reproduction in whole or in part inf permitted for any purpose of the United States Government.
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banking or test equating is putting the parameter estimates for the two

tests on a common scale. One way to do this is to estimate all of the

parameters for both tests in one calibration run. When this is done, how

does the number and quality of the common items affect the standard

errors of the parameter estimates for the unique (noncommon) items?

1. Preliminaries

The three-parameter Birnbaum logistic model is used throughout. The

probability of examinee a answering item i correctly is

Pia = ci + (I - ci)/(1. + exp(-1.7ai(Ba - bi))) (1)

where ai is the discrimination of item i ; bi is the difficulty

for the item, ci is the lower asymptote of the item response

function, and 6a is the ability for examinee a . In a typical

calibration run, poorly estimatable ci are ordinarily fixed at some

common value. In this paper, however, all ci are considered unknown

and must be estimated. In treating all of the ci as unknown we are

looking at the "worst case" standard errors.

In IRT, the origin and unit of measurement of the ability scale is

arbitrary. Until this scale is specified all parameters except the ci

are unidentifiable. The origin and unit of the ability scale must be

j specified in terms of (as a function of) the true parameters. If the
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origin and unit of the ability scale were specified in terms of the

parameter estimates, then the true parameters would be undefined. Since

the true parameters are unknown but depend on the scale used, this means

that the scale origin and the scale unit (each defined as a function of

the true parameters) must be estimated from the data. The estimated

origin and scale unit are obviously subject to sampling errors, which

affect the accuracy of all parameter estimates. It is therefore important

to define the origin and unit each by a function of parameters that can be

estimated with good accuracy.

The scale recommended in Lord and Wingersky (1983) and used here

requires that the mean of the difficulty parameters of certain selected

items be 0 (the origin) and that the difference between two such means

for two sets of selected items be I (the scale unit). This scale will be

referred to as the "capital" scale: parameters on this scale will be

denoted by the capital letters Ai , Bi , Ci , 0 a . The "small" scale

or the "LOGIST" scale, referred to by lower-case letters, is the scale

used by the LOCIST program (Wingersky, Barton, and Lord (1982)), the

computer program used here for estimating the parameters of (1) by maximum

likelihood. LOGIST sets a truncated mean of the estimated abilities to 0

and a truncated standard deviation of the estimated abilities to 1. The

following formulas convert the parameters from the LOGIST scale to the

capital scale:

o a =(ea - bo)/k

k = - o
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Ai  kai

Bi = (i - )/k

Ci  ci

where b0  and bl are means of the bi  for two selected subsets of

items. The capital scale is a linear transformation of the LOGIST scale.

The ci are not affected by the scale.

2. Variance of pi the Proportion Correct

If we could prove that the maximum likelihood parameter estimates for

the Birnbaum model are consistent when all item and ability parameters are

estimated simultaneously, the sampling variance-covariance matrix

described in Lord and Wingersky (1983) would be the correct one to use.

Since consistency has not yet been proven mathematically any results that

confirm the appropriateness of this variance-covariance matrix makes one

feel more comfortable about using it.

The sampling variance of pi , the proportion of examinees in the

sample who answer item i correctly, can be computed directly from

familiar standard formulas; it can also be computed with some effort from

the sampling variance-covariance matrix obtained by Lord and Wingersky

4(1983). These two methods should give the same results if the Lord-jWingersky matrix is correct.
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The usual likelihood equations for b and for ci , obtained by
setting the derivative of the likelihood function equal to zero, are
(Lord, 1980, eq. 12.1 and 12.2)

N*

N (U
awl ( ia  - P(6 a))(P i(a a) c di/Pi( 0 a)) = 0 (2)

a=l ia I a i a (3)

where Uia is the score (0 or 1) of examinee a on item i , N is the
number of examinees, and a caret denotes substitution of parameter esti-
mates for true parameter values. Multiplying (3) by ci , adding to (2),
and transposing gives

NN
Pi(e a) u

awl a-i u a

Since

N
a-I (4)

we have
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pi P (6)(5
N a=l i

From (4) and (5), we can derive two separate formulas for the variance

of Pi •

For some group of examinees whose abilities are specified by the

vector 6 {61, 62--. 6 N0 , we have from (4) that

1 N N
N ) E cov(uia,uia, 16)

S N a=1 a'=l

N
2 Z var(uia[e)
N a=1

N
N .() .o(6a ) (6)

N2 =1 i a a

with

0 1(a ) = 1 - P(0 a)

since cov(uia,uiale) 0 when a * a' . Similarly,

cov(PiPj () 6 0 (7)

__-
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By the formula for the covariance between two sums, we have from (5)

for the same group of examinees that

1 N
var(p,16) - E - cov[Pi(0 ),PiP(6)101 (8)

N a I

SN N,
cov(PtP 1) = 2 aE E b cov[ p( a ),P (8b )JOI (9)

The covfPi(oa) , Pj(Ob) J8J are evaluated by applying the delta method

(Kelley, 1947, pp. 524-526; Kendall and Stuart, 1969, Section 10.6) to

(1). For fixed 8 (for simplicity, the notation " le is omitted from

the following formula)

cov(Pi (8 a),P ( b)) Wisjb{tit jb[C- cov(bieb)

cov(8 avb) + cov(b ibj)] + Vi tjb [cov(al.6 b  cov(ab

+ vjbtia[COV(;8, j) - cov(b ,a )] + viaVjb cov( i,a j

+ tjb[coV(ci$,b) - cov(cibj)1/1.7 + [vjb cov(ciaj)

+ Via cov(ai,cj)/ 1.7 + t ia[COV(aj) - cov(bi j)1/1.7

+ cov(ci,cj)/(1.7) 21 (10)
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where

1.7 1 (6 a )

Wia 1 - ct

t = aj(P 1 (0a) - ci)

Via ( - b )(P ) - c)
is a I i a i

The standard errors for Pi were calculated from (5) and again from

(8) and (10) for each of the 45 items in the test described in Section 3.

The results from the two different approaches agree to at least three

significant digits for each item. The cov(pi,pjle) obtained from (9) and

(10) were all of order 10- 7 or less. This gives us increased confidence

in the Lord-Wingersky sampling covariance matrix.

O I

I
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3. Effects of Chann Number of ItmNumber of Examnees, or

the Frequency Distribution of Ability

To investigate the effect of changing the number of items, the

number of examinees, or the distribution of abilities on the sampling

errors of parameter estimates, various sets of parameters were specified.

The simplest set of parameters represents the administration of a 45-iteu

test to 1500 examinees. The numerical values used as the true Oa were

a spaced sample of 1500 6a drawn from the ability estimates obtained by

LOGIST for a regular administration of the Test of English as a Foreign

Language (TOEFL). A spaced sample of fifteen items were drawn from the

sixty TOEFL items whose parameters were estimated in the same run as the

abilities. The estimated parameters for these fifteen items were used as

the true parameters. These fifteen items were then replicated twice to get

a total of 45 items, where items 16-30 and items 31-45 have the same item

parameters as items 1-)5. Note that various parameters were specified, but

no sets of artificial data were generated for this study, since sampling

variances and covariances depend only on the true parameters, not on sample

observations.

To investigate the effect of increasing the number of examinees, each

of 1500 0. was repeated four times to represent the 6a of 6000

examinees. To study the effect of increasing the number of items,

another 45 items were added exactly like the first 45 to create a 90-item

test. For a different distribution of abilities, a rectangular

distribution of 1500 0a between -3 and 3 was randomly generated.
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Tables 1-4 give the standard errors of the parameter estimates that

would be obtained from actual data in the various situations investigated.

Only the standard errors for the fifteen unique items are given in the

tables of the standard errors for the item parameters. The abilities are

grouped into 16 intervals between -4 and 3. Two of the intervals had no

examinees. N is the number of examinees and n is the number of items.

The values of both the "small" and "capital" parameters are given. The

constants to convert from the small scale to the capital scale are

O--.305 and k - 0.976.

Figure 1 contains plots corresponding to these tables. Gaps in

the curve for the ii are due to some points out of the range of the

plot. The standard error for Ci was not plotted against Ci , since most

of the Ci were equal, but against Bi - 2/Ai instead. Bi - 2/Ai is

an indicator of the ability level at which the item response curve becomes

asymptotic. The higher Bi - 2/Ai , the better one should be able to

estimate C

As expected, quadrupling the number of examinees halved the standard

errors of the estimated item parameters; doubling the number of items,

decreased the standard errors of the estimated abilities by a factor

of I~.Quadrupling the number of examinees reduces the largest

standard errors for Oa sharply, but has little effect on the smaller
standard errors; doubling the number of items has only a moderate or



Table 1

Standard Errors for A

Standard Errors for A1

Bell-shaped distribution Rectangular

ItmA n45 n -5n45
-No. i N-1500 N-1500 N-6000 N-1500

1 0.99 0.96 0.234 0.192 0.117 0.178
2 0.35 0.34 0.134 0.131 0.067 0.072
3 1.38 1.34 0.318 0.243 0.159 0.235
4 0.78 0.76 0.147 0.126 0.073 0.099
5 0.42 0.41 0.100 0.106 0.050 0.055
6 0.92 0.90 0.178 0.145 0.089 0.120
7 0.92 0.90 0.179 0.147 0.089 0.119
8 1.06 1.04 0.209 0.168 0.104 0.141
9 1.34 1.31 0.262 0.205 0.131 0.180
10 1.50 1.46 0.317 0.259 0.158 0.231
11 0.87 0.85 0.180 0.151 0.090 0.117
12 0.62 0.60 0.142 0.128 0.071 0.086
13 1.09 1.06 0.234 0.197 0.117 0.153
14 1.39 1.36 0.311 0.265 0.156 0.204
15 1.50 1.46 0.333 0.283 0.166 0.209
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Table 2

Standard Errors for B1i

Standard Errors for B1

Bell-shaped distribution Rectangular

Item b Bn-45 n=90 n-45 n=45
-No. i i N-1500 N=1500 N-6000 N=1500

1 -2.01 -1.75 0.516 0.466 0.258 0.339
2 -1.61 -1.33 2.544 2.344 1.272 1.470
3 -1.09 -0.80 0.353 0.259 0.177 0.242
4 -0.77 -0.48 0.257 0.240 0.128 0.177
5 -0.67 -0.38 0.965 0.929 0.483 0.591
6 -0.34 -0.04 0.191 0.161 0.095 0.141
7 -0.15 0.16 0.165 0.141 0.082 0.128
8 0.00 0.31 0.143 0.117 0.071 0.113
9 0.11 0.42 0.124 0.096 0.062 0.096
10 0.26 0.58 0.110 0.092 0.055 0.097
11 0.46 0.79 0.103 0.101 0.051 0.098
12 0.57 0.90 0.178 0.179 0.089 0.148
13 0.68 1.01 0.085 0.086 0.043 0.086
14 0.90 1.23 0.082 0.080 0.041 0.076
15 1.16 1.50 0.103 0.089 0.052 0.077
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Table 3

Standard Errors for C

Standard Errors for C1

Bell-shaped distribution Rectangular

I tern c n-45 n-90 n-45 n-45

-No. ~ i ~ i N-1500 N-1500 N-6000 N-1500

1 0.17 0.17 0.598 0.469 0.299 0.316
2 0.17 0.17 0.715 0.628 0.358 0.409
3 0.17 0.17 0.096 0.083 0.048 0.045
4 0.17 0.17 0.144 0.123 0.072 0.080
5 0.17 0.17 0.318 0.280 0.159 0.183
6 0.17 0.17 0.071 0.064 0.035 0.039
7 0.17 0.17 0.059 0.054 0.029 0.033
8 0.17 0.17 0.041 0.039 0.021 0.025
9 0.13 0.13 0.026 0.025 0.013 0.018

10 0.34 0.34 0.026 0.026 0.013 0.021
11 0.17 0.17 0.039 0.038 0.020 0.025
12 0.17 0.17 0.068 0.064 0.034 0.039
13 0.25 0.25 0.027 0.027 0.014 0.021
14 0.29 0.29 0.020 0.020 0.010 0.018
15 0.18 0.18 0.015 0.015 0.007 0.015
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Table 4

Standard Errors for 0

Standard Errors for 0
a

Bell-shaped distribution Rectangular

8 0 n-45 n-'90 n-n45 n-45
a a Nin1500 N-1500 N-6000 N-1500

-2.75 -2.51 2.090 1.478 1.331 1.453
-2.25 -1.99 1.296 0.917 0.879 0.955
-1.75 -1.48 0.861 0.609 0.621 0.669
-1.25 -0.97 0.607 0.429 0.460 0.491
-0.75 -0.46 0.456 0.322 0.373 0.390
-0.25 0.06 0.349 0.247 0.309 0.317
0.25 0.57 0.278 0.196 0.266 0.268
0.75 1.08 0.261 0.185 0.260 0.261
1.25 1.59 0.303 0.214 0.292 0.295
1.75 2.11 0.422 0.298 0.394 0.401
2.25 2.62 0.628 0.444 0.589 0.599
2.75 3.13 0.931 0.658 0.888 0.900
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small effect on the standard errors of item parameter estimates. Note

that the effects discussed in the previous sentence cannot be investi-

gated at all using the usual standard error formulas, which assume either

that the item parameters are known or else that the Oa are known.

The rectangular distribution of abilities definitely gives better

estimates of the item parameters than the bell-shaped distribution of

abilities. For Ci where Bi - 2/Ai is low, the rectangular distribution

gave standard errors nearly as low as the standard errors with quadruple

the number of examinees.

4. Displaying Standard Errors and Sampling Covariances

In looking at tables of standard errors it is hard to see how the

standard errors for Ai , Bi , and Ci interrelate and how the standard

errors relate to the magnitude of the parameters. A plot of the three-

dimensional asymptotic joint normal distribution of A , B , and C

would be useful but difficult to read. However, projections of the

contours of this distribution onto the three two-dimensional planes will

give a graphical representation not only of the magnitude of the standard

errors but also of the sampling correlations between the parameter

estimates. The projected contours are two-dimensional ellipses. These

plots are a refinement of a suggestion by Thomas Warm (personal

communication, 1982).

For convenience, the subscript i will now be dropped. To plot the

projection of the three dimensional contour onto the (A,B) -plane,

only var(A) , var(B) , and cov(A,B) are needed. The exponent of
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the asymptotic bivariate normal distribution of A and B is given by the

right side of (11). The quadratic in brackets is asymptotically distributed

as chi square with 2 degrees of freedom. The 95th percentile for a X 2 with

2 degrees of freedom is 5.99. Thus 95 percent of the time the obtained

(A,B) will lie within the ellipse given by the equation

5.99= 1 (A-A) 2  2pCA - A)(B - B) + (B -B) 2  (11)

1 - 2 VarA) V Var(A) Var() Var(B)

where

Cov(AB)

/ Var(A) Var(B)

Similar equations apply for the projections onto the (A,C) - and (B,C) -

planes. The ellipse plotted from (11) for a given N is identical to the

53-percent ellipse that would be plotted for a sample size N/4

The following procedure was used to plot a representative set of

ellipses. A hypothetical test of 60 items was created by selecting 60 items

from an operational SAT mathematics test and treating these item parameter

estimates as the true parameters. A standard normal distribution of 1000
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abilities was generated. We then created 15 new items with all combinations

of the parameters a - .5 , 1.0, 1.5 ; b - -2 , -1, 0, 1, 2 ; and c - .15

Using these new items, fifteen 61-item tests were created, each containing

the 60 original items and one of the new items. The sampling variance-

covariance matrix for each of the fifteen 61-item tests was obtained.

These matrices differ only because the 61st item differs for each matrix.

Only the variances and covariances for the 61st item were used in (11) to

compute the ellipses.

The plots were made for an N of 16,000 to avoid confusing overlap of

the ellipses. These ellipses are also the 53Z confidence ellipses for an N

of 4000. The left and bottom axes are labeled with the "small" scale, the

right and top axes are labeled with the "capital" scale. The standard errors

used are for parameter estimates on the capital scale. The transformation

parameters to transform from the small to the capital scale are bo = .001

k - 1.336 . The center of the ellipse is marked by a

Figure 2 shows the ellipses on the (A,B) -plane . The plot shows

that the standard error of A increases with A . The standard error of

B increases as B approaches the extremes. The sampling correlation

between A and B is moderately or strongly positive for easy items and

moderately or strongly negative for hard items.

I
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Figure 2. Projections onto the (A,B) -plane of the 95% ellipses for
an N of 16,000.
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Figure 3 shows the projections onto the (B,C) -plane. At each value

of B there are three ellipses, which are concentric because c =C .15

for all items. The longest ellipse along the C axis is for a =.5

the middle ellipse is for a = 1.0 , and the shortest is for a =1.5 .The

other triples of ellipses are similarly ordered on a . The standard error

of C is large for easy items and moderately small for difficult items; the

standard error of C decreases as a increases. As a decreases, the

sampling correlation between B and C becomes strongly positive except

for hard items where C is well determined.

Figure 4 shows the projections onto the (A,C) -plane. There are five

concentric ellipses for each value of A . The ellipse with the longest

c -axis is for b = -2.0 ,the ellipse with the shortest c -axis is

for b = 2.0 . Again C has large standard errors for easy items

and for items with low a 's. For hard items the sampling correla-

tion between A and C is positive and sometimes high; for easy items,

the correlation is negative.

4. Standard Errors for Two Tests with Common Items

Suppose that each of two tests measuring the same ability is

administered to a different group of examinees. We want to use item

* response theory either to put the items for both tests into a common item

pool or to equate the two tests. For either purpose it is necessary thatj all the estimated parameters be on the same scale.
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Unless equivalent groups of examinees are used, methods for doing this

usually require a subset of items that are common to both tests. The unique

Items are the items in each test that are not common to the other test. The

item parameters for each test can then either be estimated separately in two

calibration runs or together in one calibration run. If the parameters are

estimated in two separate runs, there are two different parameter estimates

for each common item. These should be the same except for sampling error and

the arbitrary origin and unit of measurement of the ability scale. There are

several methods for determining the linear transformation necessary to trans-

form the item parameter estimates for both tests to the same scale. These

methods will not be described here (see Stocking and Lord, 1983). However, if

all of the items for both tests are calibrated in one run, called a concurrent

calibration, the parameters for both tests are automatically put on the same

scale and no linear transformation is necessary. This concurrent procedure is

most efficient; it provides smaller standard errors and involves fewer

assumptions than other procedures. The concurrent procedure is the procedure

studied here.

One question that arises when applying the common item method for

putting the parameters for both tests on a common scale is: How many common

items are necessary? Vale, Maurelli, Gialluca, Weiss, and Ree (1981)

investigated this problem using simulated data with 5, 15, and 25 common items

and three different shapes of the common item section test information curve:

peaked, normal, and rectangular. They also investigated many other linking

methods. For the common item method, they assumed that one already had good

estimates of the parameters for the common items and required that one have

enough common and unique items to get good estimates of the abilities. They
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used two estimates of the abilities, one obtained from the coummon items, the

other from the unique items to determine the transformation to put the unique

items onto the common scale. They found that 15 to 25 items were necessary and

that the common item sections with a rectangular or normal information function

were better than those with a peaked information function.

Another study to determine the number of common items necessary was done

by McKinley and Reckase (1981). They compared the concurrent method and

several other methods for obtaining the linear transformations using the

two sets of item parameter estimates for the common items. A large set of

items using real data from a multidimensional achievement test covering seven

subareas was calibrated in one calibration run and these parameter estimates

were used as the criterion for determining how well the other linking

procedures put the parameter estimates for subsets of these items on a common

scale. A chain of three links was created, that is, test A was linked to

test B through one set of common items, test B to test C through another

set of common items, and test C to test D through a third set. Five sample

sizes ranging from 100 examinee to 2000 examinees were used. All four tests

were then calibrated in one run for the concurrent method for each sample. The

linking was done with 5, 15 and 25 common items. Each individual test was 50

items long including the common items. McKinley and Reckase concluded

4 that 5 items were not adequate, 25 items were better than 15, but 15 were

adequate for linking with the concurrent method.

Given the sampling variance-covariance matrix for all parameter estimates

in our single concurrent run when all parameters are treated as unknown, we
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can investigate what effect the number of common items has on the sampling

standard errors of the unique items in both tests. Note that this problem

cannot be investigated at all with the limited sampling-error formulas

that assume that either item or ability parameters are known.

Numerical Procedures

Suppose test I has a section of unique items labeled V4 , and test 2 has

a section of unique items labeled Z5 . Both tests have the same set of common

items labeled CO . One group of examinees, group X , took test 1, another

group of examinees, group Y , took test 2. The information matrix |lpq,

which must be inverted to get the variance-covariance matrix, has the

following structure (Lord and Wingersky, 1983):

Items Examinees
Group Group

V4 CO Z5 X Y

I S11  0 0 F1 1  0
t
e 0 S22 0 F2 1 F2 2
m
5 0 0 S3 3 0 F3 2

wIpqI =

E
x
a F11  F2 1  0 T11  0
m
i 0 F22  F3 2  0 T22
m
e
e
5 ________________
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The S submatrices ( S11 for the V4 items; S22  for the common

items; S33  for the Z5 items) contain 3 x 3 Fisher information matrices

for ai , bi , ci on the diagonal. The T submatrices are the diagonal

information matrices for the examinees: T1 1  for the examinees that took

test 1; T22  for the examinees that took test 2. The F submatrices contain

the vectors fia , each of which is the 3 x I Fisher information vector

for item i and examinee a . Note that for Group Y , this is 0 for the

V4 items; for Group X , this is 0 for Z5

The matrix *'pql is inverted by grouping the abilities for group X

into sixteen groups and by grouping the abilities for group Y into

another set of sixteen groups. Then the formulas for inverting a

partitioned matrix using the method described in Lord and Wingersky (1983)

are successively applied.

Data and Results

To study the effect of the number of common items on the standard

errors of the parameter estimates for the unique items, we selected two

60-item SAT Mathematics tests with an additional 25-item common-item

section. The 60 unique items in the first test will be referred to as V4

and the 60 unique items in the second test will be referred to as Z5

Estimates of all of the parameters were obtained in one concurrent LOGIST

run. These estimates were treated as true parameter values in computing

j the standard errors for all 145 items.
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We then doubled the length of the common item section by simply

replicating the parameters for the 25 common items. Surprisingly, the

standard errors for the 120 unique items In V4 and Z5 computed with 50

common items agreed with the standard errors computed with only 25 common

items to two decimal places. If doubling the number of common items makes

so little difference, what is the effect of halving the number of common

items? Or at the extreme, reducing the number of common items to 2?

This is really not as absurd as it sounds. Providing the common items

are not part of the test score, other than improving the estimates of the

abilities, the function of the common items is to put the parameters

for the two sets of unique items on the same metric. If the model holds,

only a linear transformation is required to convert the parameters from one

scale to another. Only 2 parameters are necessary to determine this

linear transformation. With 2 common items we are estimating four param-

eters that affect the scale, the two a 's influence the scale unit and

the two b 's influence both the scale unit and origin. The two c sa are

not affected by the scale. Consequently with 2 items we actually have

two more parmeters than absolutely necessary. However, if the 2 common

items have parameter estimates with large standard errors, the scale will

be less well determined than if the estimates have small standard errors.

To study the effect of two common items on the standard errors of the

unique items, we selected 2 "good" items and 2 "bad" items from the 25

common items. The item parameters and their standard errors for

the 2 "good" items were
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a SE(A) b SE(B) c SE(C)

.98 .09 -.10 .02 .06 .02

.96 .10 .21 .02 .15 .02

The item parameters and their standard errors for the 2 "bad" common

items were

a SE(A) b SE(B) c SE(c)

.32 .10 -1.51 .47 .07 .24

.53 .07 -1.19 .12 .07 .10

These standard errors were computed for the situation where all 25 common

items are included in the parameter estimation run.

We then obtained the variance-covariance matrix for the V4 and Z5 items

when only the 2 good common items are included in the estimation run and also

the variance-covariance matrix when only the 2 bad common items are used.

The constants to transform from the small scale to the capital scale are

bo - -.261 and k = 1.914 . Only V4 and Z5 items were used to compute

bo and k so that the same transformation wuld apply to all four variance-

covariance matrices.

Table 5 gives the medians, and the bottom and top quartiles of the

standard errors for A , B , and C , for the Z4 and V5 unique items

computed for four different situations: using 50 common items, using 25

1common items, using 2 good common items, and using 2 bad common items. Using

2 good common items gives smaller standard errors for the unique items than

using 2 bad common items. The standard errors using the 2 good items
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Table 5

Comparison of the Standard Errors of Estimated Item Parameters across

the Four Sets of Common Items

50 25 2 Good 2 Bad
Common Common Common Common
Items Items Items Items

Standard Errors for A
First Quartile 0.114 0.115 0.123 0.131
Median 0.140 0.141 0.151 0.163
Third Quartile 0.224 0.226 0.236 0.243

Standard Errors for B
First Quartile 0.029 0.030 0.034 0.041
Median 0.042 0.042 0.048 0.056
Third Quartile 0.066 0.067 0.072 0.076

Standard Errors for C
First Quartile 0.013 0.013 0.013 0.013
Median 0.027 0.027 0.028 0.027
Third Quartile 0.055 0.055 0.058 0.056
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are not much larger than the standard errors using 25 common items. Even

reliance on just 2 bad common items gives surprisingly good results.

Since the purpose of the common items is to determine the scale, it is not

surprising that the number of common items has a negligible effect on the

standard error of C , since c is independent of the ability scale.

Table 6 gives the standard errors for the abilities computed with the

four different sets of common items. Not surprisingly, if we increase the

number of common items to 50 we reduce the standard error of the abilities,

although not uniformly as shown by the ratio column. The standard error for

the abilities at -2 were lower when computed using the two bad common items,

which were easy items, than when computed using the two good common items.

Even though there is little difference between the standard errors when

there are 2 common items and when there are 25 common items, the parameter

estimates for the V4 and Z5 items will not have been adequately put on the

same scale if all of the parameter estimates for V4 items err in one

direction and all of the parameter estimates for Z5 items err in the

opposite direction. Is this what will happen in practice? To determine how

well an anchor test of only 2 common items puts tests V4 and Z5 on the

same scale, we reestimated the parameters twice, once in a LOCIST run with

the items for Z5 and V4 and the two "good" common items, the other in

a LOGIST run with the items for Z5 and V4 and the two "bad" common items.

The estimated parameters for Z5 and V4 computed with the 25 common

items will be used as the criterion for evaluating the calibrations
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Table 6

Comparison of the Standard Errors of Estimated Abilities across

the Four Sets of Common Items

50 25 2 Good 2 Bad
Common Common Common Common

8 0 Items Items Items Items
a a S.E S.E. Ratio S.E. S.E.

2.00 1.18 0.097 0.109 0.894 0.127 0.132
1.00 0.66 0.089 0.102 0.870 0.122 0.126

0.0 0.14 0.100 0.115 0.874 0.134 0.138
-1.00 -0.39 0.129 0.145 0.892 0.165 0.167

-2.00 -0.91 0.221 0.248 0.891 0.288 0.281
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with 2 common items. The 2 good common items did fairly well at putting

the parameters on this scale. The 2 bad items did not do so well.

The top plot in Figure 5 compares the b 's for the 60 unique V4 items

estimated with 2 good items with the b 's estimated with 25 common

items. Similarly, the bottom plot compares the b 's for the unique Z5

items. If the parameters were on the same metric the b 's in both plots

should fall on a 450 line. The difference from the 450 line is hard to

distinguish. The two points for Z5 that are far away from the 450 line had

the c 's fixed by LOGIST at the common c value in one calibration but not

in the other.

Figure 6 shows tle plots for the a 's for V4 and Z5 respectively.

Here it definitely looks as if the a 's are not on the same scale.

The a 's for the V4 items have a slope greater than 45*

Figure 7 compares the b 's estimated with the 2 bad common items with

the b 's estimated with 25 common items. Here the points for the V4

items are above the 450 line, and points for the Z5 items are below the

line. The plots comparing the a 's in Figure 8 confirm that the 2 bad

common items do not put the parameters for Z5 and V4 on the same metric.

As suspected, with the 2 bad items the parameters for one set of the unique

items err in one direction and for the other set, in the opposite direction.4 The reason for putting Z5 and V4 on the same scale was to equate

Z5 to V4 using true-score equating. What effect does using only 2 common

items to put the two forms on the same scale have on the true-score equating
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between the two forms? Figure 9 shows three true-score equating lines:

the solid line is the equating line found when the parameters are estimated

using 25 common items, the dotted line is the equating line found when the

parameters are estimated using just the 2 good common items, the dashed line

is found when the parameters are estimated using just the 2 bad common

items. For this equating, true scores on form Z5 are first equated to

true scores on V4 . Then the true scores on V4 are converted to scaled

scores between 100 and 800 by a linear transformation. Using the equating

line with the 25 items as a criterion, the equating using 2 bad common items

is worse than the equating using 2 good common items. The equating using the

2 good common items is close to the equating with 25 common items; the

maximum scaled score difference is 8 points.

All of these results assume that the item parameters estimated using

25 common items are on the same scale. This analysis should be repeated in a

situation where one knows that all of the parameters used as a criterion are

on a common scale. From the results so far, it appears that good linking may

be obtained with as few as five common items or less. However, these results

only apply when the item parameters for the two forms are put on a common

scale by estimating all of them in one calibration run. These results do not

apply when the two tests are calibrated in two separate runs and the

parameters are put on a common scale using some linear transformation

determined from the common items.
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The conclusion that good linking may be obtained with as few as five

common items is more optimistic than the conclusions reached by Vale et al.

(1981) and by McKinley and Reckase (1981). Our differences with Vale et al.

may be due to the facts that 1) their scaling was based on estimated 0 's,

and 2) they used three estimation runs instead of one concurrent run. Our

differences with McKinley and Reckase are probably due to the facts that in

their study 1) the responses of some examinees to some items (as we

understand it) often appeared twice in the same concurrent LOGIST run,

violating the assumption of local independence; and, more importantly, 2)

they pooled the Iowa Tests of Educational Development covering seven

different achievement areas, and analyzed the resulting multidimensional

pool of items as if it were unidimensional.

Summary

The asymptotic sampling variance-covariance matrix of maximum likeli-

hood estimators when both abilities and item parameters are unknown was

used to study several problems in item response theory, such as the extent

to which more items, more examinees, or a different distribution of

abilities will provide better estimates of parameters. It was found for the

values of n and N studied that that the standard error of 0 varies

inversely as /n , but is only moderately affected by changes in N ; the

standard error of the estimated item parameters varies inversely as

but is only slightly affected by changes in n
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A rectangular distribution of abilites gives smaller standard errrors

for the item parameters than doubling the number of items. in fact, for low

A 's, also for C 's for items with B - 2/A less than -1, the standard

errors computed with a rectangular distribution of ability were nearly as

low as the standard errors computed with a bell-shaped distribution and

quadruple the number of people.

With the variance-covariance matrix computed when all parameters are

treated as unknown, one can study the effect of the number of common items

on the standard errors of the unique items when each of two tests containing

common items is administered to a different group of examinees and the

parameters for both tests are calibrated in one LOCIST run. This problem

cannot be dealt with at all by previously available sampling error formulas.

The number of common items has little effect on the standard errors of the

parameters for the unique items. The standard errors indicate that as few

as 2 items may be sufficient providing the parameter estimates for these two

items are well determined. However when two tests were actually

calibrated in one LOGIST run using 2 common items that had parameter

estimates with low standard errors, the parameters were not quite on the

same scale as the parameters estimated with 25 common items. The ; is

I were very close to the same scale but the a 's for one of the tests

were on a slightly different scale. Although 2 items are not quiteI enough, adequate linking may be possible with as few as five items.
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